Abstract

We present the numerical results for low temperature behavior of the transverse-field Ising model on a frustrated checkerboard lattice, with focus on the effect of both quantum and thermal fluctuations. Applying the recently-developed continuous-time quantum Monte Carlo algorithm, we compute the magnetization and susceptibility down to extremely low temperatures while changing the magnitude of both transverse and longitudinal magnetic fields. Several characteristic behaviors are observed, which were not inferred from the previously-studied quantum order from disorder at zero temperature, such as a horizontal-type stripe ordering at a substantial longitudinal field and a persistent critical behavior down to low temperature in a weak longitudinal field region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.