Abstract

Describing correlated electron systems near phase transitions has been a major challenge in computational condensed-matter physics. In this paper, we apply highly accurate fixed node quantum Monte Carlo techniques, which directly work with many body wave functions and simulate electron correlations, to investigate the metal to insulator transition of a correlated hydrogen lattice. By calculating spin and charge properties, and analyzing the low energy Hilbert space, we identify the transition point and identify order parameters that can be used to detect the transition. Our results provide a benchmark for density functional theories seeking to treat correlated electron systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.