Abstract

Ground-state phase transition of site-diluted Heisenberg antiferromagnets on a square lattice is studied. By using the continuous-time loop algorithm, we perform large-scale quantum Monte Carlo simulation on large systems at quite low temperatures. It is found that the critical concentration of magnetic sites is independent of the spin size S, and equal to the classical percolation threshold. However, the existence of quantum fluctuations makes the critical exponents deviate from those of the classical percolation transition. It is found that the transition is not universal, i.e., the critical exponents depend on the spin size S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call