Abstract

Quantum Monte Carlo (QMC) methods are being increasingly used as complements to Hartree–Fock (HF) methods for computing the electronic structure of molecules and materials. We investigate the nature of the insulating state driven by electronic correlations in the ladder compound NaV 2O 5; considered as a quarter-filled system. We use an extended Hubbard model (EHM) to study the role of on-site and inter-site Coulomb interaction. It is found that the insulating state in the charge-disordered phase of this compound take origin from the transfer of spectral density and dynamical fluctuations. Our calculation allows us also, to understand the origin of the insulating states above T C and to estimate the relative importance of various physical mechanisms responsible for the gap formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call