Abstract

In this paper, a Monte Carlo method is proposed, which utilizes Bohmian trajectories to simulate dissipative transport in one-dimensional quantum devices. The proposed method, similar to the classical Monte Carlo method, is capable of simulating both elastic and inelastic scattering effects, with the distinction that quantum effects such as tunneling are also included. At first, the Bohmian trajectories for the wave packets injected from the right and the left contacts are obtained by solving the time-dependent Schrodinger equation, and then scattering effects are included via stochastic changes applied on the electron trajectories. We have shown that the results of the proposed model agree well with those of NEGF formalism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.