Abstract

The accurate calculation of the binding energy of the beryllium dimer is a challenging theoretical problem. In this study, the binding energy of Be2 is calculated using the diffusion Monte Carlo (DMC) method, using single Slater determinant and multiconfigurational trial functions. DMC calculations using single-determinant trial wave functions of orbitals obtained from density functional theory calculations overestimate the binding energy, while DMC calculations using Hartree-Fock or CAS(4,8), complete active space trial functions significantly underestimate the binding energy. In order to obtain an accurate value of the binding energy of Be2 from DMC calculations, it is necessary to employ trial functions that include excitations outside the valence space. Our best estimate DMC result for the binding energy of Be2, obtained by using configuration interaction trial functions and extrapolating in the threshold for the configurations retained in the trial function, is 908 cm(-1), only slightly below the 935 cm(-1) value derived from experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.