Abstract
We present a general scheme for the calculation of the Renyi entropy of a subsystem in quantum many-body models that can be efficiently simulated via quantum Monte Carlo. When the simulation is performed at very low temperature, the above approach delivers the entanglement Renyi entropy of the subsystem, and it allows to explore the crossover to the thermal Renyi entropy as the temperature is increased. We implement this scheme explicitly within the Stochastic Series expansion as well as within path-integral Monte Carlo, and apply it to quantum spin and quantum rotor models. In the case of quantum spins, we show that relevant models in two dimensions with reduced symmetry (XX model or hardcore bosons, transverse-field Ising model at the quantum critical point) exhibit an area law for the scaling of the entanglement entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.