Abstract
In this study the spectral problem of the two-dimensional Schrodinger equation with the cylindrically symmetrical decatic potential is carried out. The concept of quantum monodromy is introduced to give insight into the energy levels of system with this potential. It is shown that quantum monodromy occurs at ρ = 0 in the distribution of eigenstates around a critical point on the spectrum at E = 0 with zero angular momentum, such that there can be no smoothly valid assignment of quantum number. Cases with the three-well and four-well potentials are presented to give rise to the double degeneracies with respect to energy except for the angular momentum m = 0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.