Abstract

Hong-Ou-Mandel (HOM) interference, the bunching of indistinguishable photons at a beam splitter, is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Here, we report a full-field, scan-free, quantum imaging technique that exploits HOM interference to reconstruct the surface depth profile of transparent samples. We demonstrate the ability to retrieve images with micrometre-scale depth features with a photon flux as small as 7 photon pairs per frame. Using a single photon avalanche diode camera we measure both the bunched and anti-bunched photon-pair distributions at the HOM interferometer output which are combined to provide a lower-noise image of the sample. This approach demonstrates the possibility of HOM microscopy as a tool for label-free imaging of transparent samples in the very low photon regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call