Abstract

AbstractThe detection of single quantum systems can reveal information that would be averaged out in traditional techniques based on ensemble measurements. The nitrogen-vacancy (NV) centers in diamond have shown brilliant prospects of performance as quantum bits and atomic sensors under ambient conditions, such as ultra-long coherence time, high fidelity control and readout of the spin state. In particular, the sensitivity of the NV center spin levels to external environmental changes makes it a versatile detector capable of measuring various physical quantities, such as temperature, strain, electric fields and magnetic fields. In this paper, we review recent progress in NV-based quantum metrology, and speculate on its future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call