Abstract

The phase diagram of a two-dimensional mesoscopic system of charges or dipoles, whose realizations could be electrons in a semiconductor quantum dot or indirect excitons in a system of two vertically coupled quantum dots, is investigated. Quantum calculations using ab initio Monte Carlo integration along trajectories determine the properties of such objects in the temperature-quantum de-Boer-parameter plane. At zero (sufficiently low) temperature, as the quantum fluctuations of the particles increase, two types of quantum disordering phenomena occur with increasing quantum de Boer parameter q: first, for q∼10−5 the systems transform into a radially ordered but orientationally disordered state wherein various shells of the “atom” rotate relative to one another. For much larger q∼0.1, a transition occurs to a disordered state (a superfluid in the case of a system of bosons).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.