Abstract

We have performed an experimental test under the conditions in which quantum mechanics predicts spatially discontinuous single-particle transport. The transport is beyond the relativistic paradigm of movement in Cartesian space and therefore may well be nonlocal. Our test has demonstrated that such transport does exist. This fact opens the door for a realistic interpretation of quantum mechanics in so far as the requirement of Lorentz invariance appears inapplicable to any version of quantum theory. Moreover, as quantum mechanics proposes a particle dynamics beyond relativity, it automatically requires an adequate ‘quantum’ concept of spacetime, for which the relativistic concept is only a limiting case. The quantum concept allows absolute simultaneity and hence revives the notion of absolute time. It also goes beyond the relativistic curvilinear Cartesian order of space to account for quantum phenomena such as discontinuity and nonlocality in the spirit of Bohm's concept of the implicate order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call