Abstract

The experimental techniques have evolved to a stage where various examples of nanostructures with non-trivial shapes have been synthesized, turning the dynamics of a constrained particle and the link with geometry into a realistic and important topic of research. Some decades ago, a formalism to deduce a meaningful Hamiltonian for the confinement was devised, showing that a geometry-induced potential (GIP) acts upon the dynamics. In this work we study the problem of prescribed GIP for curves and surfaces in Euclidean space R3, i.e., how to find a curved region with a potential given a priori. The problem for curves is easily solved by integrating Frenet equations, while the problem for surfaces involves a non-linear 2nd order partial differential equation (PDE). Here, we explore the GIP for surfaces invariant by a 1-parameter group of isometries of R3, which turns the PDE into an ordinary differential equation (ODE) and leads to cylindrical, revolution, and helicoidal surfaces. Helicoidal surfaces are particularly important, since they are natural candidates to establish a link between chirality and the GIP. Finally, for the family of helicoidal minimal surfaces, we prove the existence of geometry-induced bound and localized states and the possibility of controlling the change in the distribution of the probability density when the surface is subjected to an extra charge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.