Abstract

We compare different approaches to the construction of the quantum mechanics of a particle in the general Riemannian space and space–time via quantization of motion along geodesic lines. We briefly review different quantization formalisms and the difficulties arising in their application to geodesic motion in a Riemannian configuration space. We then consider canonical, semiclassical (Pauli–De Witt), and Feynman (path-integral) formalisms in more detail and compare the quantum Hamiltonians of a particle arising in these models in the case of a static, topological elementary Riemannian configuration space. This allows selecting a unique ordering rule for the coordinate and momentum operators in the canonical formalism and a unique definition of the path integral that eliminates a part of the arbitrariness involved in the construction of the quantum mechanics of a particle in the Riemannian space. We also propose a geometric explanation of another main problem in quantization, the noninvariance of the quantum Hamiltonian and the path integral under configuration space diffeomorphisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call