Abstract
'Alchemical' interpolation paths, i.e. coupling systems along fictitious paths without realistic correspondence, are frequently used within materials and molecular modeling simulation protocols for the estimation of changes in state functions such as free energies. We discuss alchemical changes in the context of quantum chemistry, and present illustrative numerical results for the changes of HOMO eigenvalue of the He atom due to alchemical teleportation - the simultaneous annihilation and creation of nuclear charges at different locations. To demonstrate the predictive power of alchemical first order derivatives (Hellmann-Feynman) the covalent bond potential of hydrogen fluoride and hydrogen chloride is investigated, as well as the hydrogen bond in the water-water and water-hydrogen fluoride dimer, respectively. Based on converged electron densities for one configuration, the versatility of alchemical derivatives is exemplified for the screening of entire binding potentials with reasonable accuracy. Finally, we discuss new constraints for the identification of non-linear coupling potentials for which the energy's Hellmann-Feynman derivative will yield accurate predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.