Abstract

AbstractWe have studied the structures of Al/Si disordered leucite and bicchulite with a quantum mechanical version of the virtual crystal approximation, VCA. In leucite, the average tetrahedron has a composition of (AlSi2)O4, while bicchulite represents an extreme case with (Al2Si)O4tetrahedra. Both structures are well described with the VCA. In conjunction with an earlier study, where we have shown that the (AlSi)O4tetrahedra in gehlenite and Al,Si-disordered octahedra are also well reproduced, we have now established that the VCA gives a reliable description of the averaged structure of disordered aluminosilicates over the whole compositional range. The current calculations confirm that Al/Si ordering is not driving the cubic to tetragonal phase transformation in leucite. In bicchulite, the model calculations are consistent with hydrogen on Wyckoff position 8c, in agreement with the result of a single crystal X-ray diffraction study, but in variance with results based on a neutron powder diffraction study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.