Abstract
The presented investigation aims to establish a foundation for the study of ion beam cancer therapy employing time-dependent density functional theory for calculating collision cross-sections and energies of secondary electrons produced by a charged ion impacting on a biological target of arbitrary size and shape. The obtained collision cross-sections compare well to values obtained using the popular PASS code, which relies on the modified Bohr theory. Furthermore, we demonstrate that the differential cross-sections obtained in this study seem to be affected by post-collision electron recapture processes occurring inside the target.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.