Abstract

With the progress of LSI technology, the electronic device size is scaled down to the sub 0.1μ m region. In such an ultrasmall device, it is indispensable to take quantum mechanical effects into account in device modeling. In this paper, we present a newly developed quantum Monte Carlo device simulation applicable to ultrasmall semiconductor devices. In this model, the quantum effects are represented in terms of quantum mechanically corrected potential in the classical Boltzmann equation. It is demonstrated that the quantum transport effects such as tunneling and energy quantization in ultrasmall semiconductor devices are obtained for the first time by using the standard Monte Carlo techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.