Abstract

A recent crystal structure of the precleaved HDV ribozyme along with biochemical data support a mechanism for phosphodiester bond self-cleavage in which C75 acts as a general acid and bound Mg(2+) ion acts as a Lewis acid. Herein this precleaved crystal structure is used as the basis for quantum mechanical/molecular mechanical calculations. These calculations indicate that the self-cleavage reaction is concerted with a phosphorane-like transition state when a divalent ion, Mg(2+) or Ca(2+), is bound at the catalytic site but is sequential with a phosphorane intermediate when a monovalent ion, such as Na(+), is at this site. Electrostatic potential calculations suggest that the divalent metal ion at the catalytic site lowers the pK(a) of C75, leading to the concerted mechanism in which the proton is partially transferred to the leaving group in the phosphorane-like transition state. These observations are consistent with experimental data, including pK(a) measurements, reaction kinetics, and proton inventories with divalent and monovalent ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.