Abstract
The present computational study focuses on the investigation of bimolecular hydrogen abstractions that can occur during free radical polymerization (FRP) processes. In particular, several hydrogen abstractions from four monomers (butyl acrylate, BA; styrene, ST; butyl methacrylate, BMA; vinyl acetate, VA) and three different backbone chains (poly-BA, poly-BA-co-VA, and poly-BA-co-ST) have been studied. The aim is to provide an overview of the kinetics for all possible intermolecular hydrogen abstraction reactions from all chemical species present in a bulk FRP as well as to support the understanding of the influence of chemical environment on hydrogen abstractions. All simulations were performed using density functional theory (DFT) with quantum tunneling factors estimated using the Eckart model. This study provides proof that the presence of an electron donating group in the chemical environment of the abstracted hydrogen atoms can lead to lower activation energies and higher rate coefficients for abstraction whereas the presence of an electron withdrawing group leads to opposite effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.