Abstract
Some quantum optics researchers might not realize that classical electromagnetism predicts a mathbf {pi } phase shift between S- and P-polarized reflection and might think the reflection coefficients of the transverse modes are independent, or that such a phase shift has no measurable consequences. In this paper, we discuss theoretical grounds to define elements of a 4x4 matrix to represent the beamsplitter, accurately accounting for transverse polarization modes and phase relations between them. We also provide experimental evidence confirming this matrix representation. From a scientific point of view, the paper addresses a non-trivial equivalence between the classical fields Fresnel formalism and the canonical commutation relations of the quantized photonic fields. That the formalism can be readily verified with a simple experiment provides further benefit. The beamsplitter expression derived can be applied in the field of quantum computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.