Abstract
Atom-centered point charges are a convenient and computationally efficient way to approximately represent the electrostatic properties of biological macromolecules. Atomic charges are routinely used in molecular modeling applications such as molecular simulations, molecular recognition, and ligand binding studies and for determining quantitative structure activity relationships. In the present paper a divide-and-conquer linear-scaling semiempirical method combined with a conductor-like screening model is applied to the calculation of charge distributions of solvated DNA and RNA duplexes in canonical A- and B-forms. The atomic charges on A-DNA, B-DNA, and A-RNA duplex decamers are analyzed to characterize the convergence of the linear-scaling method, and the effects of the charge model and semiempirical Hamiltonian. Furthermore, the inter- and intramolecular charge variations on DNA and RNA duplex 72-mers are investigated to gain insight into the influence of conformation, base stacking, and solvent polari...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.