Abstract

Time-independent quantum mechanical (QM) and quasiclassical trajectory (QCT) scattering calculations have been carried out for the C(1D) + H2 --> CH + H reaction at a collision energy of 80 meV on a newly developed ab initio potential energy surface [B. Bussery-Honvault et al., Phys. Chem. Chem. Phys. 7, 1476 (2005)] of 1 1A" symmetry, corresponding to the second singlet state 1 1B1 of CH2. A general good agreement has been found between the QM and QCT rotational distributions and differential cross sections (DCSs). In both cases, DCSs are strongly peaked in the forward direction with a small contribution in the backward direction in contrast with those obtained on the 1 1A' surface, which are nearly symmetric. Rotational distributions obtained on the 1 1A" surface are somewhat colder than those calculated on the 1 1A' surface. The specific dynamics and the contribution of the 1 1A" surface to the overall reactivity of this system are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.