Abstract

A simulation of quantum dot (QD) energy levels was designed to reproduce a quantum mechanical analytic method based on perturbation theory. A Schrödinger equation describing an electron–hole pair in a QD was solved, in consideration of the heterogeneity of the material parameters of the core and shell. The equation was solved numerically using single-particle basis sets to obtain the eigenstates and energies. This approach reproduced an analytic solution based on perturbation theory, while the calculation was performed using a numerical method. Owing to the effectiveness of the method, QD behavior according to the core diameter and external electric field intensity could be investigated reliably and easily. A 9.2 nm diameter CdSe/ZnS QD with a 4.2 nm diameter core and 2.5 nm thick shell emitted a 530 nm green light, according to an analysis of the effects of core diameter on energy levels. A 4 nm redshift at V/cm electric field intensity was found while investigating the effects of external electric field on energy levels. These values agree well with previously reported experimental results. In addition to the energy levels and light emission wavelengths, the spatial distributions of wavefunctions were obtained. This analysis method is widely applicable for studying QD characteristics with varying structure and material compositions and should aid the development of high-performance QD technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call