Abstract

A description of the parametric amplifier and frequency converter is presented without introducing the classical (i.e., parametric) approximation for the pumping field. Constants of the motion are found which reduce the solution of the Schr\odinger equation to the diagonalization of a matrix. This diagonalization is accomplished numerically, and the eigenvalues and eigen-functions of a system with fixed energy are calculated. The time-dependent behavior of the mean number of photons in the amplified or frequency up-converted field is presented. The time evolution of the probability distributions is illustrated. The technique is extended to the problem of coherent spontaneous emission from a system of $N$ two-level atoms interacting with the radiation field where both the atomic system and the radiation field are quantized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.