Abstract

We show that quantum measures and integrals appear naturally in any $L_2$-Hilbert space $H$. We begin by defining a decoherence operator $D(A,B)$ and it's associated $q$-measure operator $\mu (A)=D(A,A)$ on $H$. We show that these operators have certain positivity, additivity and continuity properties. If $\rho$ is a state on $H$, then $D_\rho (A,B)=\rmtr\sqbrac{\rho D(A,B)}$ and $\mu_\rho (A)=D_\rho (A,A)$ have the usual properties of a decoherence functional and $q$-measure, respectively. The quantization of a random variable $f$ is defined to be a certain self-adjoint operator $\fhat$ on $H$. Continuity and additivity properties of the map $f\mapsto\fhat$ are discussed. It is shown that if $f$ is nonnegative, then $\fhat$ is a positive operator. A quantum integral is defined by $\int fd\mu_\rho =\rmtr (\rho\fhat\,)$. A tail-sum formula is proved for the quantum integral. The paper closes with an example that illustrates some of the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.