Abstract

We study quantum measurement with preselection and postselection, and derive the precise expressions of the measurement results without any restriction on the coupling strength between the system and the measuring device. For a qubit system, we derive the maximum pointer shifts by choosing appropriate initial and finial states. A significant amplification effect is obtained when the interaction between the system and the measuring device is very weak, and typical ideal quantum measurement results are obtained when the interaction is strong. The improvement of the signal-tonoise ratio (SNR) and the enhancement of the measurement sensitivity (MS) by weak measurements are studied. Without considering the probability decrease due to postselection, the SNR and the MS can be both significantly improved by weak measurements; however, neither SNR nor MS can be effectively improved when the probability decrease is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call