Abstract
Global dimensions for fusion categories Ak(G) defined by a pair (G,k), where G is a Lie group and k a positive integer, are expressed in terms of Lie quantum superfactorial functions. The global dimension is defined as the square sum of quantum dimensions of simple objects, for the category of integrable modules over an affine Lie algebra at some level. The same quantities can also be defined from the theory of quantum groups at roots of unity or from conformal field theory WZW models. Similar results are also presented for those associated module-categories that can be obtained via conformal embeddings (they are “quantum subgroups” of a particular kind). As a side result, we express the classical (or quantum) Weyl denominator of simple Lie groups in terms of classical (or quantum) factorials calculated for the exponents of the group. Some calculations use the correspondence existing between periodic quivers for simply-laced Lie groups and fusion rules for module-categories associated with Ak(SU(2)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.