Abstract
Quantum mass acquisition, in which a massless (quasi)particle becomes massive due to quantum corrections, is predicted to occur in several subfields of physics. However, its experimental observation remains elusive since the emergent energy gap is too small. We show that a spinor Bose-Einstein condensate is an excellent candidate for the observation of such a peculiar phenomenon as the energy gap turns out to be 2 orders of magnitude larger than the zero-point energy. This extraordinarily large energy gap is a consequence of the dynamical instability. The propagation velocity of the resultant massive excitation mode is found to be decreased by the quantum corrections as opposed to phonons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.