Abstract

Here we present a many-body theory based on a solution of the N-representability problem in which the ground-state two-particle reduced density matrix (2-RDM) is determined directly without the many-particle wave function. We derive an equation that re-expresses physical constraints on higher-order RDMs to generate direct constraints on the 2-RDM, which are required for its derivation from an N-particle density matrix, known as N-representability conditions. The approach produces a complete hierarchy of 2-RDM constraints that do not depend explicitly upon the higher RDMs or the wave function. By using the two-particle part of a unitary decomposition of higher-order constraint matrices, we can solve the energy minimization by semidefinite programming in a form where the low-rank structure of these matrices can be potentially exploited. We illustrate by computing the ground-state electronic energy and properties of the H_{8} ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.