Abstract

We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark-state polaritons under realistic assumptions. Within this model, we analyze the driven-dissipative transport of polaritons through the system by considering a coherent drive on one side and by including the spontaneous emission of the metastable Rydberg state. Using a variational approach to solve the many-body problem, we find strong antibunching of the outgoing photons despite the losses from the Rydberg state decay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call