Abstract

What does it mean for one quantum process to be more disordered than another? Interestingly, this apparently abstract question arises naturally in a wide range of areas such as information theory, thermodynamics, quantum reference frames, and the resource theory of asymmetry. Here we use a quantum-mechanical generalization of majorization to develop a framework for answering this question, in terms of single-shot entropies, or equivalently, in terms of semi-definite programs. We also investigate some of the applications of this framework, and remarkably find that, in the context of quantum thermodynamics it provides the first complete set of necessary and sufficient conditions for arbitrary quantum state transformations under thermodynamic processes, which rigorously accounts for quantum-mechanical properties, such as coherence. Our framework of generalized thermal processes extends thermal operations, and is based on natural physical principles, namely, energy conservation, the existence of equilibrium states, and the requirement that quantum coherence be accounted for thermodynamically.

Highlights

  • What does it mean for one quantum process to be more disordered than another? Interestingly, this apparently abstract question arises naturally in a wide range of areas such as information theory, thermodynamics, quantum reference frames, and the resource theory of asymmetry

  • Notice that notions equivalent to quantum majorization have previously been considered in refs. 21–25 in the contexts of quantum statistics and quantum information theory

  • We show that the necessary and sufficient condition found in Theorem 2 has an interesting physical interpretation; loosely speaking, it implies that a state conversion is possible in quantum thermodynamics, if and only if it does not lead to any net increase in work or time-information

Read more

Summary

Introduction

What does it mean for one quantum process to be more disordered than another? Interestingly, this apparently abstract question arises naturally in a wide range of areas such as information theory, thermodynamics, quantum reference frames, and the resource theory of asymmetry. In the Supplementary Note 7, we show that our core result on quantum majorization can be adapted to the setting of generalized thermal processes to fully describe the state interconversion structure.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call