Abstract

We propose a theory describing low-temperature properties of magnets with integer spin and large single-ion easy-plane anisotropy D in magnetic field H directed parallel to the hard axis. Considering the exchange interaction between spins as a perturbation and using the bosonic spin representation proposed in our recent paper [1] we find thermal corrections to the elementary excitation spectrum, magnetization and specific heat in the vicinity of the quantum critical point (QCP) H = H c1(0) ∼ D in the first nonvanishing orders of the perturbation theory. An expression is found for the boundary of the paramagnetic phase H c1(T) in the H-T plane. The effective interaction between bosons is derived near the QCP. The proposed theory describes well experimental data obtained in NiCl2-4SC(NH2)2 (DTN).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.