Abstract

The Landau-Lifshitz-Gilbert equations for the evolution of the magnetization, in presence of an external torque, can be cast in the form of the Lorenz equations and, thus, can describe chaotic fluctuations. To study quantum effects, we describe the magnetization by matrices, that take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic fluctuations. We identify a criterion, for the appearance of such non-linear terms. This depends on whether an invariant, symmetric tensor of the algebra can vanish or not. This proposal is studied in detail for the fundamental representation of u(2) = u(1) × su(2). We find a knotted structure for the attractor, a bimodal distribution for the largest Lyapunov exponent and that the dynamics takes place within the Cartan subalgebra, that does not contain only the identity matrix, thereby can describe the quantum fluctuations.

Highlights

  • Recent advances in magnetic materials and techniques allow manipulation of spin moments at nanoscale resolution

  • What has received much less attention is the contribution of quantum fluctuations, that become significant at nanoscale resolution and are crucial for controlling qubit devices [6]

  • The transition to chaos, at r = rcrit, appears at the same value as for the classical Lorenz system, only much more abrupt in the matrix case. Another way to characterize the quantum fluctuations is by studying the time evolution of the three commutators, Tr([X, Y ]), Tr([Y, Z]) and Tr([X, Z])

Read more

Summary

Quantum Magnets and Matrix Lorenz Systems

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés

Introduction
The linear transformation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.