Abstract

Internet of Medical Things (IoMT) is an ecosystem composed of connected electronic items such as small sensors/actuators and other cyber-physical devices (CPDs) in medical services. When these devices are linked together, they can support patients through medical monitoring, analysis, and reporting in more autonomous and intelligent ways. The IoMT devices; however, often do not have sufficient computing resources onboard for service and security assurance while the medical services handle large quantities of sensitive and private health-related data. This leads to several research problems on how to improve security in IoMT systems. This paper focuses on quantum machine learning to assess security vulnerabilities in IoMT systems. This paper provides a comprehensive review of both traditional and quantum machine learning techniques in IoMT vulnerability assessment. This paper also proposes an innovative fused semi-supervised learning model, which is compared to the state-of-the-art traditional and quantum machine learning in an extensive experiment. The experiment shows the competitive performance of the proposed model against the state-of-the-art models and also highlights the usefulness of quantum machine learning in IoMT security assessments and its future applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.