Abstract

This study evaluates the efficacy of quantum machine learning (QML) models in predicting stainless steel corrosion behaviour. Using two datasets, the quantum support vector classifier (QSVC) outperformed classical models, achieving accuracies of 95.46 % and 94.80 % for Dataset A and Dataset B, respectively. The QSVC excelled in identifying complex corrosion classes and demonstrated robust performance across diverse environments. This QML approach accurately predicts corrosion without experimental testing, saving significant time and cost. Future research will aim to include more environmental variables and steel types, broadening the model's applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.