Abstract
Semantic knowledge graphs are large-scale triple-oriented databases for knowledge representation and reasoning. Implicit knowledge can be inferred by modeling the tensor representations generated from knowledge graphs. However, as the sizes of knowledge graphs continue to grow, classical modeling becomes increasingly computationally resource intensive. This article investigates how to capitalize on quantum resources to accelerate the modeling of knowledge graphs. In particular, we propose the first quantum machine learning algorithm for inference on tensorized data, i.e., on knowledge graphs. Since most tensor problems are NP-hard [18], it is challenging to devise quantum algorithms to support the inference task. We simplify the modeling task by making the plausible assumption that the tensor representation of a knowledge graph can be approximated by its low-rank tensor singular value decomposition, which is verified by our experiments. The proposed sampling-based quantum algorithm achieves speedup with a polylogarithmic runtime in the dimension of knowledge graph tensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.