Abstract
Quantum systems, when interacting with their environments, may exhibit nonequilibrium states that are tempting to be interpreted as quantum analogs of chaotic attractors. However, different from the Hamiltonian case, the toolbox for quantifying dissipative quantum chaos remains limited. In particular, quantum generalizations of Lyapunov exponents, the main quantifiers of classical chaos, are established only within the framework of continuous measurements. We propose an alternative generalization based on the unraveling of quantum master equation into an ensemble of "quantum trajectories," by using the so-called Monte Carlo wave-function method. We illustrate the idea with a periodically modulated open quantum dimer and demonstrate that the transition to quantum chaos matches the period-doubling route to chaos in the corresponding mean-field system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.