Abstract

In efforts to scale the size of quantum computers, modularity plays a central role across most quantum computing technologies. In the light of fault tolerance, this necessitates designing quantum error-correcting codes that are compatible with the connectivity arising from the architectural layouts. In this paper, we aim to bridge this gap by giving a novel way to view and construct quantum LDPC codes tailored for modular architectures. We demonstrate that if the intra- and inter-modular qubit connectivity can be viewed as corresponding to some classical or quantum LDPC codes, then their hypergraph product code fully respects the architectural connectivity constraints. Finally, we show that relaxed connectivity constraints that allow twists of connections between modules pave a way to construct codes with better parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.