Abstract

We address potential deviations of radiation field from the bosonic behavior and employ local quantum estimation theory to evaluate the ultimate bounds to precision in the estimation of these deviations using quantum-limited measurements on optical signals. We consider different classes of boson deformations and found that intensity measurement on coherent or thermal states would be suitable for their detection making, at least in principle, tests of boson deformation feasible with current quantum optical technology. On the other hand, we found that the quantum signal-to-noise ratio (QSNR) is vanishing with the deformation itself for all the considered classes of deformations and probe signals, thus making any estimation procedure of photon deformation inherently inefficient. A partial way out is provided by the polynomial dependence of the QSNR on the average number of photons, which suggests that, in principle, it would be possible to detect deformation by intensity measurements on high-energy thermal states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call