Abstract
New-generation transmission electron microscopes (TEMs) are equipped with detectors that approach the shot-noise limit. Hence it is pertinent to ask: What are the quantum limits of electron scattering experiments in the TEM? For example, for a given electron dose, what is the ultimate accuracy allowed by quantum mechanics for the atomic structure of a material? We provide quantitative answers based on quantum estimation theory. We also show that, for an arbitrary set of sample parameters, the quantum limit is achievable under conditions of weak scattering, but not strong multiple scattering (this conclusion extends to scattering of other types of radiation). Implications for structure determination of radiation-sensitive materials are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.