Abstract

New-generation transmission electron microscopes (TEMs) are equipped with detectors that approach the shot-noise limit. Hence it is pertinent to ask: What are the quantum limits of electron scattering experiments in the TEM? For example, for a given electron dose, what is the ultimate accuracy allowed by quantum mechanics for the atomic structure of a material? We provide quantitative answers based on quantum estimation theory. We also show that, for an arbitrary set of sample parameters, the quantum limit is achievable under conditions of weak scattering, but not strong multiple scattering (this conclusion extends to scattering of other types of radiation). Implications for structure determination of radiation-sensitive materials are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call