Abstract

We experimentally demonstrate a fiber-based phase tracking system through an adaptive homodyne detection technique. In the experiment, we use a random phase signal as an example. The system works well when the random phase varies between -2.4 and + 2.4 radians. Such tracking range is much larger than previous work due to the improved performance of phase-locked loop. The minimum mean square error reaches theoretical value at a photon flux of ~106, which proves a quantum-limited fiber phase tracking. Such system has potential applications in high-precision real-time fiber sensing of temperature, strain, and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.