Abstract

Accelerated charges emit electromagnetic radiation. According to classical electrodynamics, if the charges move along sufficiently close trajectories they emit coherently; i.e., their emitted energy scales quadratically with their number rather than linearly. By investigating the emission by a two-electron wave packet in the presence of an electromagnetic plane wave within strong-field QED, we show that quantum effects deteriorate the coherence predicted by classical electrodynamics even if the typical quantum nonlinearity parameter of the system is much smaller than unity. We explain this result by observing that coherence effects are also controlled by a new quantum parameter which relates the recoil undergone by the electron to the width of its wave packet in momentum space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call