Abstract

Signal-tuned Gabor functions — Gaussian-modulated sinusoids whose parameters are determined by a spatial or spectral “tuning signal” — have previously been shown to provide a plausible model for the stimulus-dependent receptive fields and responses of the simple and complex cells of the primary visual cortex (V1). The signal-tuned responses obey Schrödinger equations, which has led to the proposal of a quantum-like model for V1 cells: by considering the squared magnitude of a particular signal-tuned wave function as a probability density, one arrives at a Poisson spiking process which appears consistent with the neurophysiological findings. Here, by incorporating Hermite-polynomial factors to the signal-tuned Gabor functions, we obtain a generalized quantum-like signal-tuned model for which further relevant properties are demonstrated, such as receptive-field coding of the stimulus and its derivatives, saturating spatial summation curves and half-wave rectification of the simple cell responses. Although only a one-dimensional approach is considered here, such properties will carry over to a two-dimensional model, in which case, as our preliminary analysis indicates, end-stopping — another important feature of cortical cells — can also be accommodated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call