Abstract

We study the propagation of quantum states of light in separable longitudinally inhomogeneous waveguides. By means of the usual quantization approach this kind of media would lead to the unphysical result of quantum noise squeezing. This problem is solved by means of generalized canonical transformations in a comoving frame. Under these transformations the generator of propagation is a Lewis–Ermakov invariant in space which is quantized and, accordingly, a propagator consistent with experiments is obtained. Finally, we show that the net effect produced by propagation in these media is a quantum Gouy's phase with applications in quantum information processing and sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.