Abstract

We describe a tunneling spectroscopy technique in a double bilayer graphene heterostructure where momentum-conserving tunneling between different energy bands serves as an energy filter for the tunneling carriers, and allows a measurement of the quasiparticle state broadening at well-defined energies. The broadening increases linearly with the excited state energy with respect to the Fermi level and is weakly dependent on temperature. In-plane magnetotunneling reveals a high degree of rotational alignment between the graphene bilayers, and an absence of momentum randomizing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.