Abstract

Quantum lattice gas algorithms are developed for the coupled-nonlinear Schrodinger (coupled-NLS) equations, equations that describe the propagation of pulses in birefringent fibers. When the cross-phase modulation factor is unity, the coupled-NLS reduce to the Manakov equations. The quantum lattice gas algorithm yields vector solitons for the fully integrable Manakov system that are in excellent agreement with exact results. Simulations are also presented for the interaction between a turbulent 2-soliton mode and a simple NLS 2-soliton mode. The quantum algorithm requires 4 qubits for each spatial node, with quantum entanglement required only between pairs of qubits through a unitary collision operator. The coupling between the qubits is achieved through a local phase change in the absolute value of the paired qubit wave functions. On symmetrizing the unitary streaming operators, the resulting quantum algorithm, which is unconditionally stable, is accurate to O(e2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.