Abstract

We propose a Langevin equation to describe the quantum Brownian motion of bounded particles based on a distinctive formulation concerning both the fluctuation and dissipation forces. The fluctuation force is similar to that employed in the classical case. It is a white noise with a variance proportional to the temperature. The dissipation force is not restricted to be proportional to the velocity and is determined in a way as to guarantee that the stationary state is given by a density operator of the Gibbs canonical type. To this end we derived an equation that gives the time evolution of the density operator, which turns out to be a quantum Fokker–Planck–Kramers equation. The approach is applied to the harmonic oscillator in which case the dissipation force is found to be non Hermitian and proportional to the velocity and position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.