Abstract

We use the quantum Langevin equation as a starting point to study the response function, the position–velocity correlation function and the velocity autocorrelation function of a charged quantum Brownian particle in the presence of a magnetic field and linearly coupled to a heat bath via position coordinate. We study two bath models – the Ohmic bath model and the Drude bath model and make a detailed comparison in various time–temperature regimes. For both bath models, there is a competition between the cyclotron frequency and the viscous damping rate giving rise to a transition from an oscillatory to a monotonic behaviour as the damping rate is increased. In the zero point fluctuation dominated low-temperature regime, non-trivial noise correlations lead to some interesting features in this transition. We study the role of the memory time-scale which comes into play in the Drude model and study the effect of this additional time-scale. We discuss the experimental implications of our analysis in the context of experiments in cold ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call