Abstract

A microscopic theory is used to study the optical properties of semiconductor quantum dots. The dephasing of the coherent polarization due to carrier-carrier Coulomb interaction and carrier-phonon interaction is determined from quantum kinetic equations. We investigate the density dependence of the dephasing mechanisms, and compare the relevance of various interaction processes. The failure of frequently used approximations based on the GKBA with free single-particle energies is demonstrated for pure dephasing processes involving only the localized quantum-dot states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.